Model bias triggered by long-tailed data has been widely studied. However, measure based on the number of samples cannot explicate three phenomena simultaneously: (1) Given enough data, the classification performance gain is marginal with additional samples. (2) Classification performance decays precipitously as the number of training samples decreases when there is insufficient data. (3) Model trained on sample-balanced datasets still has different biases for different classes. In this work, we define and quantify the semantic scale of classes, which is used to measure the feature diversity of classes. It is exciting to find experimentally that there is a marginal effect of semantic scale, which perfectly describes the first two phenomena. Further, the quantitative measurement of semantic scale imbalance is proposed, which can accurately reflect model bias on multiple datasets, even on sample-balanced data, revealing a novel perspective for the study of class imbalance. Due to the prevalence of semantic scale imbalance, we propose semantic-scale-balanced learning, including a general loss improvement scheme and a dynamic re-weighting training framework that overcomes the challenge of calculating semantic scales in real-time during iterations. Comprehensive experiments show that dynamic semantic-scale-balanced learning consistently enables the model to perform superiorly on large-scale long-tailed and non-long-tailed natural and medical datasets, which is a good starting point for mitigating the prevalent but unnoticed model bias.
translated by 谷歌翻译
Spatio-temporal machine learning is critically needed for a variety of societal applications, such as agricultural monitoring, hydrological forecast, and traffic management. These applications greatly rely on regional features that characterize spatial and temporal differences. However, spatio-temporal data are often complex and pose several unique challenges for machine learning models: 1) multiple models are needed to handle region-based data patterns that have significant spatial heterogeneity across different locations; 2) local models trained on region-specific data have limited ability to adapt to other regions that have large diversity and abnormality; 3) spatial and temporal variations entangle data complexity that requires more robust and adaptive models; 4) limited spatial-temporal data in real scenarios (e.g., crop yield data is collected only once a year) makes the problems intrinsically challenging. To bridge these gaps, we propose task-adaptive formulations and a model-agnostic meta-learning framework that ensembles regionally heterogeneous data into location-sensitive meta tasks. We conduct task adaptation following an easy-to-hard task hierarchy in which different meta models are adapted to tasks of different difficulty levels. One major advantage of our proposed method is that it improves the model adaptation to a large number of heterogeneous tasks. It also enhances the model generalization by automatically adapting the meta model of the corresponding difficulty level to any new tasks. We demonstrate the superiority of our proposed framework over a diverse set of baselines and state-of-the-art meta-learning frameworks. Our extensive experiments on real crop yield data show the effectiveness of the proposed method in handling spatial-related heterogeneous tasks in real societal applications.
translated by 谷歌翻译
由于需要经济的储存和二元法规的效率,因此无监督的哈希对二元表示学习引起了很多关注。它旨在编码锤子空间中的高维特征,并在实例之间保持相似性。但是,大多数现有方法在基于多种的方法中学习哈希功能。这些方法捕获了数据的局部几何结构(即成对关系),并且在处理具有不同语义信息的实际特征(例如颜色和形状)的真实情况时缺乏令人满意的性能。为了应对这一挑战,在这项工作中,我们提出了一种有效的无监督方法,即共同个性化的稀疏哈希(JPSH),以进行二进制表示学习。具体来说,首先,我们提出了一个新颖的个性化哈希模块,即个性化的稀疏哈希(PSH)。构建了不同的个性化子空间,以反映不同群集的特定类别属性,同一群集中的自适应映射实例与同一锤子空间。此外,我们为不同的个性化子空间部署稀疏约束来选择重要功能。我们还收集了其他群集的优势,以避免过度拟合,以构建PSH模块。然后,为了在JPSH中同时保留语义和成对的相似性,我们将基于PSH和歧管的哈希学习纳入无缝配方中。因此,JPSH不仅将这些实例与不同的集群区分开,而且还保留了集群中的本地邻里结构。最后,采用了交替优化算法,用于迭代捕获JPSH模型的分析解决方案。在四个基准数据集上进行的大量实验验证了JPSH是否在相似性搜索任务上优于几个哈希算法。
translated by 谷歌翻译
旨在生成新的字体的几个示例字体(FFG),由于劳动力成本的显着降低,它引起了人们的关注。典型的FFG管道将标准字体库中的字符视为内容字形,并通过从参考字形中提取样式信息将其转移到新的目标字体中。大多数现有的解决方案明确地删除了全球或组件的参考字形的内容和参考字形的样式。但是,字形的风格主要在于当地细节,即激进,组件和笔触的风格一起描绘了雕文的样式。因此,即使是单个字符也可以包含在空间位置分布的不同样式。在本文中,我们通过学习提出了一种新的字体生成方法1)参考文献中的细粒度局部样式,以及2)内容和参考文字之间的空间对应关系。因此,内容字形中的每个空间位置都可以使用正确的细粒样式分配。为此,我们对内容字形的表示作为查询和参考字形表示作为键和值的跨注意。交叉注意机制无需明确地删除全球或组件建模,而是可以在参考文字中遵循正确的本地样式,并将参考样式汇总为给定内容字形的精细粒度样式表示。实验表明,所提出的方法的表现优于FFG中最新方法。特别是,用户研究还证明了我们方法的样式一致性显着优于以前的方法。
translated by 谷歌翻译
影响最大化是挖掘社交网络深入信息的关键问题,该信息旨在选择从网络中选择种子以最大程度地增加受影响的节点的数量。为了评估种子套装的影响,现有的努力提出了拟议的代理模型(转换),以较低的计算成本来代替昂贵的蒙特卡洛模拟过程。这些基于网络先验知识的替代转换从各个角度引起具有相似特征的不同搜索行为。对于特定情况,用户很难先验确定合适的转换。在本文中,我们提出了一个多种转化的进化框架,以进行影响最大化(MTEFIM),并保证了融合保证,以利用替代转换的潜在相似性和独特的优势,并避免用户手动确定最合适的转换。在MTEFIM中,将多个转换同时优化为多个任务。每个转换均分配一个进化求解器。进行了MTEFIM的三个主要组成部分:1)根据不同人群的个人(种子集)重叠程度估算转化之间的潜在关系,2)根据转变关系,将个体转移到跨种群中,3)选择最终输出种子集,包含所有代理模型知识。 MTEFIM的有效性在基准和现实世界社交网络上得到了验证。实验结果表明,与几种流行的IM特异性方法相比,MTEFIM可以有效地利用跨多个转换的潜在转移知识,以实现高度竞争性能。可以在https://github.com/xiaofangxd/mtefim上访问MTEFIM的实现。
translated by 谷歌翻译
Joint image-text embedding is the bedrock for most Visionand-Language (V+L) tasks, where multimodality inputs are simultaneously processed for joint visual and textual understanding. In this paper, we introduce UNITER, a UNiversal Image-TExt Representation, learned through large-scale pre-training over four image-text datasets (COCO, Visual Genome, Conceptual Captions, and SBU Captions), which can power heterogeneous downstream V+L tasks with joint multimodal embeddings. We design four pre-training tasks: Masked Language Modeling (MLM), Masked Region Modeling (MRM, with three variants), Image-Text Matching (ITM), and Word-Region Alignment (WRA). Different from previous work that applies joint random masking to both modalities, we use conditional masking on pre-training tasks (i.e., masked language/region modeling is conditioned on full observation of image/text). In addition to ITM for global image-text alignment, we also propose WRA via the use of Optimal Transport (OT) to explicitly encourage finegrained alignment between words and image regions during pre-training. Comprehensive analysis shows that both conditional masking and OTbased WRA contribute to better pre-training. We also conduct a thorough ablation study to find an optimal combination of pre-training tasks. Extensive experiments show that UNITER achieves new state of the art across six V+L tasks (over nine datasets), including Visual Question
translated by 谷歌翻译
事实证明,大规模的视觉和语言(V+L)预训练已被证明有效地增强了下游V+L任务。但是,当涉及时尚域时,现有的V+L方法是不足的,因为它们忽略了时尚V+L数据和下游任务的独特特征。在这项工作中,我们提出了一个以时尚为中心的新型V+L表示框架,被称为Fashionvil。它包含两个新型时尚特定的预训练任务,旨在使用时尚V+L数据利用两个内在属性。首先,与其他域仅包含单个图像文本对的其他域相比,时尚域中可能有多个图像。因此,我们提出了一项多视图对比学习任务,以将一个图像的可视化表示为另一个图像+文本的组成多模式表示。其次,时尚文本(例如,产品描述)通常包含丰富的细粒概念(属性/名词短语)。为了利用这一点,引入了伪归因于分类任务,以鼓励同一概念的学习的单峰(视觉/文本)表示。此外,时尚V+L任务唯一包含不符合常见的一流或两流体系结构的任务(例如,文本引导的图像检索)。因此,我们提出了一个灵活的,多功能的V+L模型体系结构,该体系结构由模态 - 静态变压器组成,以便可以灵活地适应任何下游任务。广泛的实验表明,我们的FashionVil在五个下游任务中实现了新的最新技术。代码可从https://github.com/brandonhanx/mmf获得。
translated by 谷歌翻译
认知科学表明,人类会以所见主体的变化分离的事件来感知视频。状态变化触发新事件,是大量冗余信息中最有用的事件之一。但是,先前的研究重点是对细分市场的总体理解,而无需评估内部的细粒度变化。在本文中,我们介绍了一个名为Kinetic-GEB+的新数据集。该数据集由与标题相关的170K边界组成,这些字幕描述了12K视频中通用事件中的状态更改。在这个新数据集中,我们提出了三个任务,支持通过状态变化开发对视频的更细粒度,健壮和类似人类的理解。我们在数据集中评估了许多代表性基线,在该基础上,我们还设计了一种新的TPD(基于时间的成对差异)建模方法,以进行视觉差异并实现显着的性能改进。此外,结果表明,在利用不同粒度,视觉差异的表示以及状态变化的准确定位方面,当前方法仍然存在着巨大的挑战。进一步的分析表明,我们的数据集可以推动开发更强大的方法来了解状态变化,从而提高视频级别的理解。该数据集可从https://github.com/yuxuan-w/geb-plus获得
translated by 谷歌翻译
一年中,人们一直在使用深度学习来解决反演问题,我们看到框架已被应用于在录音波场和速度之间建立关系(杨等人,2016)。在这里,我们将从2个角度扩展工作,一个是推出更合适的损失函数,就像我们现在一样,像素-2像素比较可能不是表征图像结构的最佳选择,我们将详细说明如何构建成本函数捕获高级功能以增强模型性能。另一种维度正在寻找更合适的神经结构,这是一个更大的图像,自动机器学习或自动的子集。有几个着名的网络,U-Net,Reset(赫尔特拉,2016)和Densenet(Huang等人,2017),他们实现了某些问题的现象结果,但很难争辩,他们是最佳反演在某些空间内没有彻底搜索的问题。在这里,我们将显示我们的架构搜索结果以进行反转。
translated by 谷歌翻译
最近,已经成功地应用于各种遥感图像(RSI)识别任务的大量基于深度学习的方法。然而,RSI字段中深度学习方法的大多数现有进步严重依赖于手动设计的骨干网络提取的特征,这严重阻碍了由于RSI的复杂性以及先前知识的限制而受到深度学习模型的潜力。在本文中,我们研究了RSI识别任务中的骨干架构的新设计范式,包括场景分类,陆地覆盖分类和对象检测。提出了一种基于权重共享策略和进化算法的一拍架构搜索框架,称为RSBNet,其中包括三个阶段:首先,在层面搜索空间中构造的超空网是在自组装的大型中预先磨削 - 基于集合单路径培训策略进行缩放RSI数据集。接下来,预先培训的SuperNet通过可切换识别模块配备不同的识别头,并分别在目标数据集上进行微调,以获取特定于任务特定的超网络。最后,我们根据没有任何网络训练的进化算法,搜索最佳骨干架构进行不同识别任务。对于不同识别任务的五个基准数据集进行了广泛的实验,结果显示了所提出的搜索范例的有效性,并证明搜索后的骨干能够灵活地调整不同的RSI识别任务并实现令人印象深刻的性能。
translated by 谷歌翻译